
Coupled-cluster theory on graphics
processing units

Jeff Hammond1 and Eugene DePrince2

Argonne National Laboratory
1 Leadership Computing Facility (jhammond@anl.gov)

2 Center for Nanoscale Materials (adeprince@anl.gov)

29 April 2011

Jeff Hammond GPU CC

Abstract

I will discuss our recent work on implementing the coupled-cluster
method (CC) on GPUs. CC is an important quantum many-body
method for molecular calculations and is considered the ”gold
standard” due to its accuracy and black box nature. Because CC
can be implemented in terms of matrix-matrix multiplication
([SD]GEMM) operations, it is relatively straightforward to
implement on GPUs using CUDA BLAS. However, due to the large
number of terms, memory limitations of NVIDIA Fermi cards, and
large variation in matrix dimensions, realizing a large speedup
requires careful memory management and movement of data. This
talk will present our earlier work on a GPU-only implementation of
CCD as well as a more recent hybrid CCSD code, which attempts
to dynamically optimize the overlap of computation and
communication.

Jeff Hammond GPU CC

Motivation

Jeff Hammond GPU CC

Strawman Exascale Architecture

10 GB

1000s of threads
(private cache)

per-node
shared memory

~1 million nodes
(hierarchical network)

50 GB/s

300 GB/s300 GB/s 300 GB/s300 GB/s300 GB/s300 GB/s 300 GB/s300 GB/s

10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB

Jeff Hammond GPU CC

Wavefunction theory

Second-order perturbation theory (MP2) is
accurate via magical cancellation of error but
can’t do excited states.

Quantum Monte Carlo (QMC) integration
applied to the Schrödinger equation but can’t
do most properties.

Coupled-cluster theory (CC) is infinite-order
solution to many-body Schrödinger equation;
it can do both excited-state and properties.

CC applications limited to 10-100 atoms on
terascale and petascale computers because of
scaling: ∼ Nx

basis (x=5-7)

Jeff Hammond GPU CC

Motivation for CC with HPC

Electronic excited-states and electric-field perturbations
push the limits of conventional approximations in density
functional theory (DFT) and are outside the scope of
classical methods.

Interesting chemical processes in biology and material
science require model systems too large for a conventional
computational resources.

Answering many chemical questions requires large data
sets which cannot be obtained in a reasonable amount
time if done sequentially.

Jeff Hammond GPU CC

Coupled-cluster theory

Jeff Hammond GPU CC

Coupled-cluster theory

The coupled–cluster (CC) wavefunction ansatz is

|CC 〉 = eT |HF 〉

where T = T1 + T2 + · · ·+ Tn.

T is an excitation operator which promotes n electrons from
occupied orbitals to virtual orbitals in the Hartree-Fock Slater
determinant.

Inserting |CC 〉 into the Schödinger equation:

ĤeT |HF 〉 = ECCe
T |HF 〉 Ĥ|CC 〉 = ECC |CC 〉

Jeff Hammond GPU CC

Coupled-cluster theory

|CC 〉 = exp(T)|0〉
T = T1 + T2 + · · ·+ Tn (n� N)

T1 =
∑
ia

tai â
†
aâi

T2 =
∑
ijab

tabij â†aâ
†
bâj âi

|ΨCCD〉 = exp(T2)|ΨHF 〉
= (1 + T2 + T 2

2)|ΨHF 〉
|ΨCCSD〉 = exp(T1 + T2)|ΨHF 〉

= (1 + T1 + · · ·+ T 4
1 + T2 + T 2

2 + T1T2 + T 2
1T2)|ΨHF 〉

Jeff Hammond GPU CC

Coupled-cluster theory

Projective solution of CC:

ECC = 〈HF |e−THeT |HF 〉
0 = 〈X |e−THeT |HF 〉 (X = S ,D, . . .)

CCD is:

ECC = 〈HF |e−T2HeT2 |HF 〉
0 = 〈D|e−T2HeT2 |HF 〉

CCSD is:

ECC = 〈HF |e−T1−T2HeT1+T2 |HF 〉
0 = 〈S |e−T1−T2HeT1+T2 |HF 〉
0 = 〈D|e−T1−T2HeT1+T2 |HF 〉

Jeff Hammond GPU CC

Notation

H = H1 + H2

= F + V

F is the Fock matrix. CC only uses the diagonal in the canonical
formulation.

V is the fluctuation operator and is composed of two-electron
integrals as a 4D array.

V has 8-fold permutation symmetry in V rs
pq and is divided into six

blocks: V kl
ij , V ka

ij , V jb
ia , V ab

ij , V bc
ia , V cd

ab .

Indices i , j , k , . . . (a, b, c , . . .) run over the occupied (virtual)
orbitals.

Jeff Hammond GPU CC

CCD Equations

Rab
ij = V ab

ij + P(ia, jb)

[
T ae
ij I be − T ab

im Imj +
1

2
V ab
ef T

ef
ij +

1

2
T ab
mnI

mn
ij − T ae

mj I
mb
ie − Ima

ie T eb
mj + (2T ea

mi − T ea
im)Imb

ej

]

I ab = (−2Vmn
eb + Vmn

be)T ea
mn

I ij = (2Vmi
ef − V im

ef)T ef
mj

I ijkl = V ij
kl + V ij

ef T
ef
kl

I iajb = V ia
jb −

1

2
V im
eb T

ea
jm

I iabj = V ia
bj + V im

be (T ea
mj −

1

2
T ae
mj)−

1

2
Vmi
be T

ae
mj

Jeff Hammond GPU CC

Turning CC into GEMM 1

Some tensor contractions are
trivially mapped to GEMM:

I ijkl + = V ij
ef T

ef
kl

I
(ij)
(kl) + = V

(ij)
(ef)T

(ef)
(kl)

I ba + = V b
c T

c
a

Other contractions require
reordering to use BLAS:

I iabj + = V im
be T

ea
mj

Ibj ,ia + = Vbe,imTmj ,ea

Jbi ,ja + = Wbi ,meUme,ja

J jabi + = Wme
bi U ja

me

J
(ja)
(bi) + = W

(me)
(bi) U

(ja)
(me)

Jzx + = W y
x U

z
y

Jeff Hammond GPU CC

Turning CC into GEMM 2

Reordering can take as much time as GEMM. Why?

Routine flops mops pipelined

GEMM O(mnk) O(mn + mk + kn) yes
reorder 0 O(mn + mk + kn) no

Increased memory bandwidth on GPU makes reordering less
expensive (compare matrix transpose).

(There is a chapter in my thesis with profiling results and more
details if anyone cares.)

Jeff Hammond GPU CC

Hardware Details

CPU GPU
X5550 2 X5550 C1060 C2050

processor speed (MHz) 2660 2660 1300 1150
memory bandwidth (GB/s) 32 64 102 144

memory speed (MHz) 1066 1066 800 1500
ECC available yes yes no yes
SP peak (GF) 85.1 170.2 933 1030
DP peak (GF) 42.6 83.2 78 515

power usage (W) 95 190 188 238

Note that power consumption is apples-to-oranges since CPU does
not include DRAM, whereas GPU does.

Jeff Hammond GPU CC

Relative Performance of GEMM

GPU versus SMP CPU (8 threads):

 0

 100

 200

 300

 400

 500

 600

 700

 0 1000 2000 3000 4000 5000

pe
rf

or
m

an
ce

 (
gi

ga
flo

p/
s)

rank

SGEMM performance

X5550
C2050

Maximum:
CPU = 156.2 GF
GPU = 717.6 GF

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000

pe
rf

or
m

an
ce

 (
gi

ga
flo

p/
s)

rank

DGEMM performance

X5550
C2050

Maximum:
CPU = 79.2 GF

GPU = 335.6 GF

We expect roughly 4-5 times speedup based upon this evaluation.

Jeff Hammond GPU CC

Chemistry Details

Molecule o v

C8H10 21 63
C10H8 24 72
C10H12 26 78
C12H14 31 93
C14H10 33 99
C14H16 36 108

C20 40 120
C16H18 41 123
C18H12 42 126
C18H20 46 138

6-31G basis set

C1 symmetry

F and V from PSI3.

GPU code now runs from PSI3.

Without committing to anything, the intent
is to release the code under GPL with PSI4.

Jeff Hammond GPU CC

CCD Algorithm

Jeff Hammond GPU CC

CCD Performance Results

Iteration time in seconds
our DP code X5550

C2050 C1060 X5550 Molpro TCE GAMESS

C8H10 0.3 0.8 1.3 2.3 5.1 6.2
C10H8 0.5 1.5 2.5 4.8 10.6 12.7
C10H12 0.8 2.5 3.5 7.1 16.2 19.7
C12H14 2.0 7.1 10.0 17.6 42.0 57.7
C14H10 2.7 10.2 13.9 29.9 59.5 78.5
C14H16 4.5 16.7 21.6 41.5 90.2 129.3

C20 8.8 29.9 40.3 103.0 166.3 238.9
C16H18 10.5 35.9 50.2 83.3 190.8 279.5
C18H12 12.7 42.2 50.3 111.8 218.4 329.4
C18H20 20.1 73.0 86.6 157.4 372.1 555.5

Jeff Hammond GPU CC

CCD Performance Summary

 0

 100

 200

 300

 400

 500

 600

 700

C
8
H
1
0

C
1
0
H
8

C
1
0
H
1
2

C
1
2
H
1
4

C
1
4
H
1
0

C
1
4
H
1
6

C
2
0

C
1
6
H
1
8

C
1
8
H
1
2

C
1
8
H
2
0

p
e
r
f
o
r
m
a
n
c
e

(
g
i
g
a
f
l
o
p
/
s
)

molecule

C1060 SP
C1060 DP
C2050 SP
C2050 DP

Xeon X5550 SP
Xeon X5550 DP

Jeff Hammond GPU CC

Numerical Precision versus Performance

Iteration time in seconds
C1060 C2050 X5550

molecule SP DP SP DP SP DP

C8H10 0.2 0.8 0.2 0.3 0.7 1.3
C10H8 0.4 1.5 0.2 0.5 1.3 2.5
C10H12 0.7 2.5 0.4 0.8 2.0 3.5
C12H14 1.8 7.1 1.0 2.0 5.6 10.0
C14H10 2.6 10.2 1.5 2.7 8.4 13.9
C14H16 4.1 16.7 2.4 4.5 12.1 21.6

C20 6.7 29.9 4.1 8.8 22.3 40.3
C16H18 9.0 35.9 5.0 10.5 28.8 50.2
C18H12 10.1 42.2 5.6 12.7 29.4 50.3
C18H20 17.2 73.0 10.1 20.1 47.0 86.6

Almost no work on single-precision or mixed-precision for
standard CPU packages even though it is worth 2x.

Jeff Hammond GPU CC

CCSD Equations

Jeff Hammond GPU CC

CCSD Algortihm

Guiding principles:

Too many arrays to fit into GPU memory.

Copy-in every iteration in CCD was not a problem

Want multi-GPU, mixed CPU-GPU algorithms.

Design:

Persistent buffers but push all large arrays every iteration.

O(N6), O(N5) on GPU.

O(N5), O(N4) on CPU.

Dynamically schedule some diagrams each iteration to
load-balance.

Overlap computation and communication with CUDA streams
(CUBLAS compatible now).

Jeff Hammond GPU CC

Hybrid CCSD

Iteration time in seconds
Hybrid CPU Molpro NWChem PSI3 TCE GAMESS

C8H10 0.6 1.4 2.4 3.6 7.9 8.4 7.2
C10H8 0.9 2.6 5.1 8.2 17.9 16.8 15.3
C10H12 1.4 4.1 7.2 11.3 23.6 25.2 23.6
C12H14 3.3 11.1 19.0 29.4 54.2 64.4 65.1
C14H10 4.4 15.5 31.0 49.1 61.4 90.7 92.9
C14H16 6.3 24.1 43.1 65.0 103.4 129.2 163.7

C20 10.5 43.2 102.0 175.7 162.6 233.9 277.5
C16H18 10.0 38.9 84.1 117.5 192.4 267.9 345.8
C18H12 14.1 57.1 116.2 178.6 216.4 304.5 380.0
C18H20 22.5 95.9 161.4 216.3 306.9 512.0 641.3

We do at least twice as many flops as Molpro due to CC formalism.

Jeff Hammond GPU CC

More hybrid CCSD

molecule Basis o v Hybrid CPU Molpro CPU Molpro
CH3OH aTZ 7 175 2.5 4.5 2.8 1.8 1.1
benzene aDZ 15 171 5.1 14.7 17.4 2.9 3.4

C2H6SO4 aDZ 23 167 9.0 33.2 31.2 3.7 3.5
C10H12 DZ 26 164 10.7 39.5 56.8 3.7 5.3
C10H12 6-31G 26 78 1.4 4.1 7.2 2.9 5.1

Molpro optimized for v/o � 1.

Our code doesn’t favor any limit except o, v � 1.

Jeff Hammond GPU CC

The NWChem-GPU connection

Jeff Hammond GPU CC

NWChem TCE module

Automatically generated code: easy to rewrite (in
principle).

Data-parallel over tiles using Global Arrays.

Näive dynamic load-balancing (shared counter).

Standard GA programming model:
check out, compute, check in

Jeff Hammond GPU CC

TCE CPU algorithm

for (P3,P4,H1,H2) in all (P,P,H,H) tiles:

if (my turn) and (nonzero symmetry):

allocate and zero buffer Jc

for (P5,P6) in all (P,P) tiles:

if (nonzero symmetry):

allocate and zero buffer Tc

get Tb from global T

reorder Tc

allocate and zero buffer Ic

get Ib from global I

reorder Ic

compute Jc += Tc*Ic

reorder Jc

acc Jc onto global J

Jeff Hammond GPU CC

TCE GPU algorithm

grab from pool and zero buffer pair (Tc,Tg)

grab from pool and zero buffer pair (Ic,Ig)

if (push gpucompute pull < cpucompute):

iget and push Tg from global T

iget and push Ig from global I

igpu reorder Tg

igpu reorder Ig

gpucompute Jg += Tg*Ig

else:

iget Tc from global T

iget Ic from global I

compute Jc += Tc*Ic

ireorder Jg

reorder Jc

pull and acc Jc += Jg

acc Jc onto global J

Jeff Hammond GPU CC

Evaluating the GPU algorithm

Tilesizes not big enough to justify GPU all the time (bad).

Jg stays on the GPU through each pass (good).

Possibly good overlap of data movement (good).

Can unroll inner loop for maximum overlap (good), but
this doubles the memory required (bad).

Threaded CPU code helps memory issues but GA/ARMCI
not thread-safe (funneled or serialized should be okay).

Many of the GPU-oriented optimizations will help with
multicore CPUs. Fully rewritten GPU TCE in NWChem will
probably coincide with porting to BGQ for this reason.

Jeff Hammond GPU CC

Acknowledgments

Director’s Fellowship (JRH)
Computational Fellowship (AED)
Breadboard cluster
Fusion cluster

Dirac cluster

Jeff Hammond GPU CC

Shameless promotion

Jeff Hammond GPU CC

SAAHPC 2011

What: Symposium on Application Accelerators in HPC
When: July 19-21, 2011
Where: Knoxville, Tennessee

Application Sessions:
Computational chemistry on accelerators (Chair: Jeff Hammond, ALCF)
Lattice QCD (Chair: Steven Gottlieb, Indiana University, Bloomington)
Weather and climate modeling (Chair: John Michalakes, NREL)
Bioinformatics (Chair: TBD)

Submissions:
Short paper (up to 4 pages, for a poster presentation)
Long paper (up to 10 pages, for an oral presentation)

Deadlines:
Submissions due: May 6, 2011
Presentation acceptance notification: June 6, 2011
Final papers due: June 30, 2011

Jeff Hammond GPU CC

Partial bibliography

Jeff Hammond GPU CC

MD on GPUs (of many more)

All major MD packages have or will soon have a GPU implementation.

J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,
and K. Schulten. “Accelerating molecular modeling applications with
graphics processors.” J. Comp. Chem., 28 (16), 2618–2640, 2007.

J. A. Anderson, C. D. Lorenz, and A. Travesset. “General purpose
molecular dynamics simulations fully implemented on graphics processing
units.” J. Comp. Phys., 227 (10), 5342–5359, 2008.

P. Friedrichs, M. S.and Eastman, V. Vaidyanathan, M. Houston,
S. Legrand, A. L. Beberg, D. L. Ensign, C. M. Bruns, and V. S. Pande.
“Accelerating molecular dynamic simulation on graphics processing
units.” J. Comp. Chem., 30 (6), 864–872, 2009.

R. Yokota, T. Hamada, J. P. Bardhan, M. G. Knepley, and L. A. Barba.
“Biomolecular electrostatics simulation by an FMM-based BEM on 512
GPUs.” CoRR, abs/1007.4591, 2010.

Jeff Hammond GPU CC

DFT on GPUs

K. Yasuda, “Accelerating density functional calculations with graphics
processing unit.” J. Chem. Theo. Comp., 4 (8), 1230–1236, 2008.

L. Genovese, M. Ospici, T. Deutsch, J.-F. Mehaut, A. Neelov, and
S. Goedecker. “Density functional theory calculation on many-cores
hybrid central processing unit-graphic processing unit architectures.” J.
Chem. Phys., 131 (3), 034103, 2009.

I. S. Ufimtsev and T. J. Mart́ınez. “Quantum chemistry on graphical
processing units. 2. Direct self-consistent-field (SCF) implementation.”
J. Chem. Theo. Comp., 5 (4), 1004–1015, 2009; “Quantum chemistry on
graphical processing units. 3. Analytical energy gradients, geometry
optimization, and first principles molecular dynamics.” J. Chem. Theo.
Comp., 5 (10), 2619–2628, 2009.

C. J. Woods, P. Brown, and F. R. Manby. “Multicore parallelization of
Kohn-Sham theory.” J. Chem. Theo. Comp., 5 (7), 1776–1784, 2009.

P. Brown, C. J. Woods, S. McIntosh-Smith, and F. R. Manby. “A
massively multicore parallelization of the Kohn-Sham energy gradients.”
J. Comp. Chem., 31 (10), 2008–2013, 2010.

R. Farmber, E. Bylaska, S. Baden and students. “(Car-Parrinello on
GPGPUs).” Work in progress, 2011.

Jeff Hammond GPU CC

MP2 on GPUs

MP2 using the resolution-of-identity approximation involves a few large
GEMMs.

L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-Bedolla, and
A. Aspuru-Guzik. “Accelerating resolution-of-the-identity second-order
Møller-Plesset quantum chemistry calculations with graphical processing
units.” J. Phys. Chem. A, 112 (10), 2049–2057, 2008.

R. Olivares-Amaya, M. A. Watson, R. G. Edgar, L. Vogt, Y. Shao, and
A. Aspuru-Guzik. “Accelerating correlated quantum chemistry
calculations using graphical processing units and a mixed precision matrix
multiplication library.” J. Chem. Theo. Comp., 6 (1), 135–144, 2010.

A. Koniges, R. Preissl, J. Kim, D. Eder, A. Fisher, N. Masters, V. Mlaker,
S. Ethier, W. Wang, and M. Head-Gordon. “Application acceleration on
current and future Cray platforms.” In CUG 2010, Edinburgh, Scotland,
May 2010.

Jeff Hammond GPU CC

QMC on GPUs

QMC is ridiculously parallel at the node-level hence implementation of the
kernel implies the potential for scaling to many thousands of GPUs.

A. G. Anderson, W. A. Goddard III, and P. Schröder. “Quantum Monte
Carlo on graphical processing units.” Comp. Phys. Comm., 177 (3),
298–306, 2007.

A. Gothandaraman, G. D. Peterson, G. Warren, R. J. Hinde, and R. J.
Harrison. “FPGA acceleration of a quantum Monte Carlo application.”
Par. Comp., 34 (4-5), 278–291, 2008.

K. Esler, J. Kim, L. Shulenburger, and D. Ceperley. “Fully accelerating
quantum Monte Carlo simulations of real materials on GPU clusters.”
Comp. Sci. Eng., 99 (PrePrints), 2010.

Jeff Hammond GPU CC

CC on GPUs

Since we started this project, two groups have implemented non-iterative triples
corrections to CCSD on GPUs. These procedures involve a few very large
GEMMs and a reduction. At least two other groups are working on CC on
GPUs but have not reported any results.

M. Melicherč́ık, L. Demovič, and P. N. Michal Pitoňák. “Acceleration of
CCSD(T) computations using technology of graphical processing unit.”
2010.

W. Ma, S. Krishnaoorthy, O. Villa, and K. Kowalski. “GPU-based
implementations of the regularized CCSD(T) method: applications to
strongly correlated systems.” Submitted to J. Chem. Theo. Comp., 2010.

A. E. DePrince and J. .R. Hammond. “Coupled-cluster theory on
graphics processing units I. The coupled-cluster doubles method.”
Submitted to J. Chem. Theo. Comp., 2010.

Jeff Hammond GPU CC

Gaussian Integrals on GPUs

Quantum chemistry methods spend a lot of time generating matrix elements of
operators in a Gaussian basis set. All published implementations are either
closed-source (commercial) or the source is unpublished, otherwise we would be
using these in our code.

I. S. Ufimtsev and T. J. Mart́ınez. “Quantum chemistry on graphical
processing units. 1. Strategies for two-electron integral evaluation.” J.
Chem. Theo. Comp., 4 (2), 222–231, 2008.

A. V. Titov, V. V. Kindratenko, I. S. Ufimtsev, and T. J. Mart́ınez.
“Generation of kernels for calculating electron repulsion integrals of high
angular momentum functions on GPUs – preliminary results.” In Proc.
SAAHPC 2010, pages 1–3, 2010.

A. Asadchev, V. Allada, J. Felder, B. M. Bode, M. S. Gordon, and T. L.
Windus. “Uncontracted Rys quadrature implementation of up to G
functions on graphical processing units.” J. Chem. Theo. Comp., 6 (3),
696–704, 2010.

Jeff Hammond GPU CC

